Monotone Relaxation Iterates and Applications to Semilinear Singularly Perturbed Problems

نویسنده

  • IGOR BOGLAEV
چکیده

This paper deals with monotone relaxation iterates for solving nonlinear monotone difference schemes of elliptic type. The monotone ω-Jacobi and SUR (Successive Under-Relaxation) methods are constructed. The monotone methods solve only linear discrete systems at each iterative step and converge monotonically to the exact solution of the nonlinear monotone difference schemes. Convergent rates of the monotone methods are estimated. The proposed methods are applied to solving semilinear singularly perturbed reaction-diffusion problems. Uniform convergence of the monotone methods is proved. Numerical experiments complement the theoretical results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Monotone Iterates for Nonlinear Singularly Perturbed Boundary Value Problems

Recommended by Donal O'Regan This paper is concerned with solving nonlinear singularly perturbed boundary value problems. Robust monotone iterates for solving nonlinear difference scheme are constructed. Uniform convergence of the monotone methods is investigated, and convergence rates are estimated. Numerical experiments complement the theoretical results.

متن کامل

Uniform Quadratic Convergence of a Monotone Weighted Average Method for Semilinear Singularly Perturbed Parabolic Problems

This paper deals with a monotone weighted average iterative method for solving semilinear singularly perturbed parabolic problems. Monotone sequences, based on the accelerated monotone iterative method, are constructed for a nonlinear difference scheme which approximates the semilinear parabolic problem. This monotone convergence leads to the existence-uniqueness theorem. An analysis of uniform...

متن کامل

Quadratic convergence of monotone iterates for semilinear elliptic obstacle problems

In this paper, we consider the numerical solution for the discretization of semilinear elliptic complementarity problems. A monotone algorithm is established based on the upper and lower solutions of the problem. It is proved that iterates, generated by the algorithm, are a pair of upper and lower solution iterates and converge monotonically from above and below, respectively, to the solution o...

متن کامل

A hybrid method for singularly perturbed delay boundary value problems exhibiting a right boundary layer

The aim of this paper is to present a numerical method for singularly perturbed convection-diffusion problems with a delay. The method is a combination of the asymptotic expansion technique and the reproducing kernel method (RKM). First an asymptotic expansion for the solution of the given singularly perturbed delayed boundary value problem is constructed. Then the reduced regular delayed diffe...

متن کامل

High-order Methods for Semilinear Singularly Perturbed Boundary Value Problems

We considered finite difference methods of higher order for semilinear singularly perturbed boundary value problems, consisted of constructing difference schemes on nonuniform meshes. Construction of schemes is presented and convergence uniform in perturbation parameter for one method is shown on Bakhvalov’s type of mesh. Numerical experiments demonstrated influence of different meshes on devel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011